Salt	Clark[22]		Pistorius[23]		This work						
	P (kb)	Т (°С)	P (kb)	Т (°С)	P (kb)	<i>Т</i> (°С)	$-\Delta V_{\rm tr}$ (cm ³ /mole)	$\Delta S_{\rm tr}$ (cal/mole/deg)	$T \Delta S$ (cal/mole)	P (cal/mole)	ΔE (cal/mole
KF	none observed										
KC1	18.95 ± 0.1	1042 ± 5	18.7 ± 0.7	1050 ± 10	19.5 ± 0.3	1070 ± 10	3.24 ± 0.21	+0.001	17	-1520	-1540
KBr			16.8 ± 1.0	997 ± 10	16.8 ± 0.6	1005 ± 10	3.32 ± 0.18	+ 0.09	120	-1340	-1460
KI			16.9 ± 1.5	934 ± 15	$15{\cdot}3\pm0{\cdot}4$	940 ± 15	$3 \cdot 31 \pm 0 \cdot 19$	+0.25	308	-1210	-1520
RbF			32	1055	$38\cdot5\pm0\cdot8$	1105 ± 15	1.39 ± 0.55	-0.12	-170	-1280	-1110
RbCl	7.80	852	7.80 ± 0.01	852 ± 5	$8 \cdot 1 \pm 0 \cdot 3$	870 ± 5	4.45 ± 0.18	-0.30	-344	-860	-520
RbBr			$6 \cdot 1 \pm 0 \cdot 8$	808 ± 10	$6 \cdot 0 \pm 0 \cdot 2$	830 ± 10	6.15 ± 0.23	-0.20	-222	-880	-660
RbI			$5 \cdot 0 \pm 0 \cdot 8$	760 ± 10	4.7 ± 0.2	763 ± 10	6.69 ± 0.16	-0.22	-233	-750	-520

Table 4. Thermodynamic properties of the $Fm3m \rightarrow Pm3m$ transition in the potassium and rubidium halides at the
$Fm3m \rightleftharpoons liquid \rightleftharpoons Pm3m triple point$

4

.

Ψ.

.

volume change. Since we find no polymorphic change at high temperatures where the transition kinetics would be more favorable, and the fact that Pistorius[23] found no break in the melting curve suggests that KF has no solidsolid transition at pressures below 45 kb.

The Fm3m \rightleftharpoons Pm3m transition pressures found for the salts KCl, KBr and Kl are compared in Table 2 with the transition pressures reported in the literature. Bridgman has examined this transition in these salts on three separate occasions [3, 24, 25]; however, only the latest of Bridgman's data [25] are given. In general our results for P_{tr} are in good agreement with the published data (Table 2). Average values of P_{tr} were in each case calculated from the data tabulated in Table 2.

Bridgman[3] and Pistorius[11, 12] have examined the effect of temperature on the transition pressure in these salts over the temperature range 25°-200°C. Bridgman[3] gives +3.45, -4.54 and +3.33 bar/deg respectively for the temperature dependence of the transition pressure in KCl. KBr and KI. Pistorius [11, 12], on the other hand, gives -0.25, +0.55and -1.88 bar/deg for these same salts. These data are compared with the constant b from Table 1, i.e. the value of dP/dT found in this work. The data from these three sources all indicate that the variation of $P_{\rm tr}$ with temperature is small. It is seen that the values of dP/dT found by Bridgman and Pistorius all disagree in sign. The sign of dP/dT however determines the sign of the entropy change, $\Delta S_{\rm tr}$ (Fm3m \rightarrow Pm3m) for this transition in these salts since $\Delta V_{\rm tr}$ (Fm3m \rightarrow Pm3m) is negative in all cases.

The agreement between ΔV_{tr} for KCl, KBr and KI found here and with published data (Table 3) is also relatively good, with the exception of the ΔV_{tr} data given by Weir and Piermarini[5]. Weir *et al.* obtained their transition volume data from high pressure X-ray diffraction studies. Their data, however, are also in disagreement with the ΔV_{tr} data given by Jamieson[7] and by Nagasaki *et al.*[9] for KI and KCl respectively. (The latter data for KI and KCl were also determined from X-ray diffraction studies carried out at high pressures.) These ΔV_{tr} data of Weir *et al.*[5] were not used in the calculation of the average value of ΔV_{tr} for the salts KCl, KBr and KI.

Rubidium halides

Piermarini and Weir[4] report a solidsolid phase transaction in RbF at a pressure between 9 and 15 kb. They give the volume change for this transition as -20 per cent. Knof and Maisch[26] have observed changes in the optical transmission properties of RbF at a pressure of 33 kb, which is similar to the optical effect associated with the Fm3m \rightarrow Pm3m transition in the potassium halides, KCl and KBr. Pistorius and Snyman[13], on the other hand, report phase transitions in RbF at a pressure of 6.1 kb at a temperature of 20°, and 5.0 kb at 200°C. The latter authors[13] noted that this phase transition in RbF was very sluggish. No indication of the size of ΔV for this transition was given by Pistorius et al.[13].

The results from our dilatometric measurements clearly indicate a polymorphic transition in RbF at about 35 kb, in agreement with the results reported by Knof et al. [26]. Transition pressure data for RbF are shown in Fig. 2. The transition was very sluggish at 100° and no transition was observed at room temperatures. However, at temperatures above 300°C the transition proceeds as readily as was found in the other alkali halides at 200°C. In the case of RbF, data taken only above 300°C were used in the least squares treatment of $P_{\rm tr}$ and $\Delta V_{\rm tr}$ vs. temperature. It was also necessary to modify the experimental arrangement since at temperatures above 400°C RbF reacts with the graphite heater causing it to become relatively non-conducting. Pistorius[23] found Ni to be a satisfactory container for RbF at high temperatures. We therefore isolated our sample from the graphite heater with a thin (0.0025 cm) nickel sleeve. With this modification our measurements were still limited to temperatures below about